
Blind SQL injection:
are your web applications
vulnerable?
White paper

Table of contents
Introduction .2
What is blind SQL injection? .2
Detecting blind SQL injection .3
Exploiting vulnerabilities .3
Solutions .4

Parameterized queries .4
Stored procedures .5
Data sanitization .7
Database considerations .7

Introduction
SQL injection occurs when an application does not
properly validate user-supplied input and then includes
that input as part of a SQL statement. SQL injection
largely depends on an attacker discovering and
verifying portions of the original SQL query, using
information from error messages. However, web
applications can still be vulnerable to blind SQL injection
attacks even with no error messages or when they
only reveal generic information. By altering the input
parameters, an attacker can pose various “true-false”
statements to the application to gather information about
the database and then ultimately reconstruct the SQL
statement by gauging its behavior. Are different pages
displayed as a result of changed input? Does an inserted
“wait” command cause the application to pause before
responding? It is called “blind,” because no significant
error appears, yet the application is still vulnerable.
Blind SQL injection is as dangerous as SQL injection,
and it can have the same consequences. This white
paper educates security professionals and developers
on the techniques they can use to take advantage
of a web application that is vulnerable to blind SQL
injection, and describes some of the techniques they
can use to protect against blind SQL injection and
similar input validation problems.

What is blind SQL injection?
In many aspects, SQL injection and blind SQL injection
are the same. A common coding error facilitates both
blind SQL and SQL injection: The application accepts
data from a client and executes SQL queries without
first validating the client’s input. The attacker is then
free to extract, modify, add or delete content from the
database. In some circumstances, the attacker may
even penetrate past the database server and into the
underlying operating system.

A primary difference between the attacks is in the
method of determination. Hackers typically test for SQL
injection vulnerabilities by sending the application input
that causes the server to generate an invalid SQL query.
If the server returns an error message to the client, the
attacker attempts to reverse-engineer portions of the
original SQL query, using information gained from the
error messages. A typical administrative safeguard is
simply to prohibit the display of database server error
messages. The absence of errors only means that the
application is protected against one form of
SQL injection.

Because blind SQL injection attacks do not rely on error
messages, you cannot look for specific patterns or strings
in the web server’s response. Instead, an attacker looks
to see whether two requests with different parameter
values return the same information. In essence, blind
SQL injection attacks attempt to recreate the query in
such a way that the meaning stays the same, but its
content differs.

2

Detecting blind SQL injection
Web applications commonly use SQL queries with client-
supplied input in the WHERE clause to retrieve data from
a database. By adding additional conditions to the SQL
statement and evaluating the web application’s output,
you can determine whether an application is vulnerable
to blind SQL injection.

For example, many companies allow Internet access to
archives of their press releases. A URL for accessing
the company’s fifth press release may appear as:

http://www.thecompany.com/pressRelease.jsp?pressRel
easeID=5

The web application may retrieve the press release
using the following SQL statement (the client-supplied
input is bold):

SELECT title, description, releaseDate, body FROM
pressReleases WHERE pressReleaseID = 5

The database server responds by returning the data
for the fifth press release. The web application then
formats the press release data into an HTML page and
sends the response to the client.

To determine whether an application is vulnerable to
blind SQL injection, you can inject an extra true
condition into the WHERE clause. For example, you
may request this URL:

http://www.thecompany.com/pressRelease.jsp?pressRel
easeID=5 AND 1=1

The database server executes the following query:

SELECT title, description, releaseDate, body FROM
pressReleases WHERE pressReleaseID = 5 AND 1=1

If the query also returns the same press release, then
the application is susceptible to blind SQL injection.
Part of the user’s input is interpreted as SQL code.

A secure application rejects this request because it treats
the user’s input as a value, and the value 5 AND 1=1
causes a type mismatch error. The server does not
display a press release.

Another method of testing for blind SQL injection
vulnerabilities is to alter the “math” of the parameter.
For example, instead of submitting 5 as the value of
PressReleaseID, an attacker may submit 3%2b3, which
equals 3 + 2 if the raw string is passed verbatim to the
database. The database resolves the query, because it
conforms to a valid syntax. If the same press release is
returned, the application is vulnerable to blind SQL
injection.

You should also make sure that inserting 1=1 does not
yield results based on a flaw in the application instead
of blind SQL injection. You can do this by inserting
1=2, an untrue condition, into the SQL query. If the
results for each query are the same, then SQL
injection does not exist.

Exploiting vulnerabilities
When testing for vulnerabilities for blind SQL injection,
the injected WHERE condition is predictable: 1=1 is
always true. However, when you attempt to exploit a
vulnerability, you don’t know whether the injected
WHERE condition is true or false before sending it. If a
record is returned, the injected condition must be true.
You can use this behavior to ask the database server
true-false questions. For example, the following request
asks the database server, “Is the current user dbo?”

http://www.thecompany.com/pressRelease.jsp?pressRel
easeID=5 AND USER_NAME() = ‘dbo’

USER_NAME() is a SQL Server function that returns
the name of the current user. If the current user is dbo
(administrator), the fifth press release is returned. If
not, the query fails, and no press release displays. By
combining subqueries and functions, you can pose
more complex questions. The following example tries
to retrieve the name of a database table, one
character at a time:

http://www.thecompany.com/pressRelease.jsp?pressR
eleaseID=5 AND ascii(lower(substring((SELECT TOP 1
name FROM sysobjects WHERE xtype=’U’), 1, 1))) >
109

The subquery, SELECT, asks for the name of the first
user table in the database, which is typically the first
thing done in SQL injection exploitation. The substring()
function returns the first character of the query’s result.
The lower() function simply converts the character to
lower case. Finally, the ascii() function returns the
ASCII value of this character.

If the server returns the fifth press release in response to
the URL, you know that the first letter of the query’s
result comes after the letter “m” (ASCII character 109)
in the alphabet. By making multiple requests, you can
determine the precise ASCII value.

http://www.thecompany.com/pressRelease.jsp?pressR
eleaseID=5 AND ascii(lower(substring((SELECT TOP 1
name FROM sysobjects WHERE xtype=’U’), 1, 1))) >
116

3

If no press release is returned, the ASCII value is greater
than 109 but not greater than 116. Therefore, the letter
is between “n” (110) and “t” (116).

http://www.thecompany.com/pressRelease.jsp?pressR
eleaseID=5 AND ascii(lower(substring((SELECT TOP 1
name FROM sysobjects WHERE xtype=’U’), 1, 1))) >
113

This is another false statement. You now know that the
letter is between 110 and 113.

http://www.thecompany.com/pressRelease.jsp?pressR
eleaseID=5 AND ascii(lower(substring((SELECT TOP 1
name FROM sysobjects WHERE xtype=’U’), 1, 1))) >
111

The statement is false again. The range is narrowed
down to two letters: “n” (110) and “o” (111).

http://www.thecompany.com/pressRelease.jsp?pressR
eleaseID=5 AND ascii(lower(substring((SELECT TOP 1
name FROM sysobjects WHERE xtype=’U’), 1, 1))) =
111

The server returns the press release, so the statement is
true. The first letter of the query’s result, and the table’s
name, is “o.” To retrieve the second letter, repeat the
process but change the second argument in the
substring() function so that the next character of the
result is extracted (the change is bold):

http://www.thecompany.com/pressRelease.jsp?pressR
eleaseID=5 AND ascii(lower(substring((SELECT TOP 1
name FROM sysobjects WHERE xtype=’U’), 2, 1))) >
109

Repeat this process until the entire string is extracted.
In this case, the result is “orders.”

Solutions
Blind SQL and SQL injection are attacks upon the web
application, not the web server or the operating system.
Therefore, fixes—other than those implemented in the
application code—are stop-gap measures and short-
term solutions at best. Most methods for preventing
blind SQL and SQL injection also have their own
limitations. Therefore, you should employ a layered
approach to preventing these attacks and implement
several different measures to prevent unauthorized
access to your back-end database.

Parameterized queries
SQL injection arises from an attacker’s manipulation of
query data to modify query logic. Therefore, the best
way to prevent both blind SQL and SQL injection
attacks is to separate the logic of a query from its
data. This prevents commands that are inserted from
user input from being executed. The downside of this
approach, although slight, is that it can affect
performance, and each query on the site must be
structured in this method to be completely effective. If
one query is inadvertently bypassed, the application
can be vulnerable. The following code shows a sample
SQL statement that is SQL injectable:

sSql = “SELECT LocationName FROM Locations “;

sSql = sSql + “ WHERE LocationID = “ +
Request[“LocationID”];

oCmd.CommandText = sSql;

4

The following example uses parameterized queries and
is safe from SQL injection attacks:

sSql = “SELECT * FROM Locations “;

sSql = sSql + “ WHERE LocationID = @LocationID”;

oCmd.CommandText = sSql;

oCmd.Parameters.Add(“@LocationID”,
Request[“LocationID”]);

The application sends the SQL statement to the server
without including the user’s input. Instead, a parameter,
@LocationID, is used as a placeholder for the input. In
this way, user input never becomes part of the command
that SQL executes. Any input that an attacker inserts is
effectively negated. An error is still generated, but it is
a simple data-type conversion error and not something
that an attacker can exploit.

The code examples in Figure 1 illustrate a product ID
being obtained from an HTTP query string and used in
a SQL query. The string containing the SELECT statement
and passed to SqlCommand is a static string, and it is
not concatenated from input. Additionally, the input
parameter is passed using a SqlParameter object,
whose name, @pid, matches the name used within
the SQL query.

Stored procedures
Another method of separating query logic from its
data is by using stored procedures to isolate the web
application from SQL. To secure an application against
blind SQL injection, you must prevent client-supplied
data from modifying the syntax of SQL statements.
All SQL statements required by the application can
be sequestered in stored procedures and kept on the
database server. Simply moving all SQL statements into
stored procedures does not solve blind SQL and SQL
injection problems if you use input parameters without
first validating the data.

Stored procedures let you build dynamic SQL
statements using string concatenation that can then
be executed using EXEC commands. However, this
defeats using stored procedures for security purposes
if you use input parameters without sanitizing the data
first. If you must use arbitrary statements, you can use
PreparedStatements. Using PreparedStatements and
stored procedures to compile the SQL statement before
user input is added makes it impossible for user input
to modify the SQL statement. Finally, the application
should execute the stored procedures using a safe
interface, such as JDBC CallableStatement or ADO
Command Object.

5

C# sample:

string connString =
WebConfigurationManager.ConnectionStrings[“myConn”].ConnectionString;

using (SqlConnection conn = new SqlConnection(connString))

{

conn.Open();

SqlCommand cmd = new SqlCommand(“SELECT Count(*) FROM Products
WHERE ProdID=@pid”, conn);

SqlParameter prm = new SqlParameter(“@pid”, SqlDbType.VarChar,50);

prm.Value = Request.QueryString[“pid”];

cmd.Parameters.Add(prm);

int recCount = (int)cmd.ExecuteScalar();

}

VB.NET sample:

Dim connString As String =

WebConfigurationManager.ConnectionStrings(“myConn”).ConnectionString

Using conn As New SqlConnection(connString)

conn.Open()

Dim cmd As SqlCommand = New SqlCommand(“SELECT Count(*)FROM
Products WHERE ProdID=@pid”, conn)

Dim prm As SqlParameter = New SqlParameter(“@pid”, SqlDbType.VarChar,
50)

prm.Value = Request.QueryString(“pid”)

cmd.Parameters.Add(prm)

Dim recCount As Integer = cmd.ExecuteScalar()

End Using

Figure 1. Obtaining a product ID and using it in a SQL query

Using pressRelease.jsp as an example, the code may
look like:

String query = “SELECT title, description, releaseDate,
body

FROM pressReleases WHERE pressReleaseID = “ +
request.getParameter(“pressReleaseID”);

Statement stmt = dbConnection.createStatement();

ResultSet rs = stmt.executeQuery(query);

The first step toward securing the code is to remove the
SQL statement from the web application and put it in a
stored procedure on the database server:

CREATE PROCEDURE getPressRelease

@pressReleaseID integer

AS

SELECT title, description, releaseDate, body FROM
pressReleases

WHERE pressReleaseID = @pressReleaseID

At the application, instead of string building a SQL
statement to call the stored procedure, you can use a
CallableStatement to safely execute it:

CallableStatement cs =
dbConnection.prepareCall(“{callgetPressRelease(?)}”);

cs.setInt(1,Integer.parseInt(request.getParameter(“pressRele
aseID”)));

ResultSet rs = cs.executeQuery();

In a .NET application, the change is similar. The
ASP.NET code is vulnerable to blind SQL injection:

String query = “SELECT title, description, releaseDate,
body FROM pressReleases WHERE pressReleaseID = “
+Request[“pressReleaseID”];

SqlCommand command = new
SqlCommand(query,connection);

command.CommandType = CommandType.Text;

SqlDataReader dataReader = command.ExecuteReader();

As with JSP code, the SQL statement must be converted
to a stored procedure, which can then be accessed
safely by a stored procedure SqlCommand:

SqlCommand command = new
SqlCommand(“getPressRelease”,connection);

command.CommandType =
CommandType.StoredProcedure;

command.Parameters.Add(“@PressReleaseID”,SqlDbType.I
nt);

command.Parameters[0].Value =
Convert.ToInt32(Request[“pressReleaseID”]);

SqlDataReader dataReader = command.ExecuteReader();

6

Data sanitization
You can prevent the majority of blind SQL injection
vulnerabilities by properly validating user input for both
type and format. Cleanse all client-supplied data of any
characters or strings that can be used maliciously, and
do so for all applications, not just those that use SQL
queries. The best method to use is “white listing.” Only
accept certain data for specific fields, such as limiting
user input to account numbers or account types for those
relevant fields or only accepting integers or letters of
the English alphabet for others. Many developers try to
validate input by “black listing” characters or “escaping”
them. Black listing rejects known bad data, such as a
single quotation mark, by placing an “escape” character
in front of it so that the following items are treated as a
literal value. Stripping quotes or putting backslashes in
front of them is not enough and is not as effective as
white listing, because it is impossible to know all forms
of bad data in advance.

A good method of filtering data is to use a default-deny
regular expression. You should only include the type of
characters that you want. For example, the following
regular expression returns only letters and numbers:

s/[^0-9a-zA-Z]//\

Make your filter narrow and specific. Whenever
possible, use only numbers, and after that, use only
numbers and letters. If you need to include symbols
or punctuation, make absolutely sure that you convert
them into HTML substitutes, such as "e; or >. For
example, if a user submits an e-mail address, allow
only the “at” sign, underscore, period and hyphen in
addition to numbers and letters and only after those
characters are converted to their HTML substitutes.

Database considerations
Limit the rights of database users. Successful blind
SQL injection attacks run in the context of the users’
credentials. While limiting privileges does not prevent
SQL injection attacks outright, it can make them
significantly more difficult. Don’t give users access to
all system-stored procedures if they only need access to
a few, user-defined procedures.

You should also have a strong system administrator
(SA) password policy. Often, an attacker needs the
functionality of the administrator account to utilize
specific SQL commands. It is much easier to “brute
force” a weak SA password, and it increases the
likelihood of a successful blind SQL injection attack.
Never use the SA account as the application database
user. Instead, create specific accounts for individual
purposes. Also, if you do not need them, delete SQL-
stored procedures, such as master.Xp_cmdshell,
xp_startmail, xp_sendmail and sp_makewebtask.

7

To learn more, visit www.hp.com/go/software
© Copyright 2007 Hewlett-Packard Development Company, L.P. The information contained herein is subject to
change without notice. The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

4AA1-5382ENW, October 2007

